Alzheimer's disease is thought to be caused by the buildup of abnormal, thread-like protein deposits in the brain, but little is known about the molecular structures of these so-called beta-amyloid fibrils. A study published in the journal Cell has revealed that distinct molecular structures of beta-amyloid fibrils may predominate in the brains of Alzheimer's patients with different clinical histories and degrees of brain damage. The findings pave the way for new patient-specific strategies to improve diagnosis and treatment of this disease.
Senior study author Robert Tycko and his team had previously noticed that beta-amyloid fibrils grown in a dish have different molecular structures, depending on the specific growth conditions. Based on this observation, they suspected that fibrils found in the brains of patients with Alzheimer's disease are also variable and that these structural variations might relate to each patient's clinical history. The team extracted beta-amyloid fibril fragments from the brain tissue of two patients with different clinical histories and degrees of brain damage and then used these fragments to grow a large quantity of fibrils in a dish. They found that a single fibril structure prevailed in the brain tissue of each patient, but the molecular structures were different between the two patients. Read the study summary, with figures.