Chemokines, soluble PD-L1, and immune cell hyporesponsiveness are distinct features of SARS-CoV-2 critical illness
Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both “cytokine storm” and “immune suppression.” However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited.
Researchers sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. The findings of this study were published in the American Journal of Physiology.
Researchers enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.