A study published in Cell Reports shows how next-generation genetic sequencing can track mutations in the SARS-CoV-2 virus, which can in effect help with transmission tracing, diagnostic testing accuracy and vaccine effectiveness, according to a press release.
“Once you have the virus’ genetic sequence with next-generation sequencing (NGS), then you can start asking more questions,” said Dirk Dittmer, PhD, professor of microbiology and immunology at the UNC School of Medicine, and senior author of the study. “Where have we seen this exact sequence before? Did it come from a different state or country? When did this patient travel there and who else may have it?”
Dittmer’s recent study is the largest to focus on suburban and rural communities. Researchers were able to reconstruct the mutational landscape of cases seen at the UNC Medical Center in Chapel Hill, NC, a tertiary clinical care center. From March 30 through May 8, 175 samples from confirmed COVID-19-positive patients were analyzed.
Out of the samples tested, 57 percent carried the spike D614G variant noted in similar studies. The presence of this variant is associated with a higher genome copy number and its prevalence has expanded throughout the pandemic. The genetic variations found in these samples also support the hypotheses that the majority of cases in North Carolina originated from people traveling within the U.S. rather than internationally.
With a grant from the N.C. Policy Collaboratory based at UNC-Chapel Hill, Dittmer’s lab will continue using NGS to track the SARS-CoV-2 virus through the remainder of 2020. The goal is to enroll every patient at UNC Hospitals with flu or respiratory symptoms for COVID-19 diagnostic testing. These samples will be sequenced and compiled to form a comprehensive profile of any virus that these patients carry, information that will continue to help a community of researchers in their fight against SARS-CoV-2 and potentially novel coronaviruses.