Biomarkers found for COVID-19 condition in children

Sept. 2, 2021

A rare but serious inflammatory condition that affects children who contract COVID-19 produces a distinctive pattern of biomarkers that may help physicians predict disease severity and also aid researchers in developing new treatments, according to a study led by Cedars-Sinai.

As reported in a news release, the study focused on multisystem inflammatory syndrome in children (MIS-C), an inflammatory response involving multiple organs that can occur weeks after infection with SARS-CoV-2, the virus that causes COVID-19. Although most patients improve with medical care, more than half the MIS-C cases in the U.S. require ICU admission, and the condition can be deadly.

A total of 4,404 MIS-C cases and 37 fatalities in the U.S. had been reported to the federal Centers for Disease Control and Prevention as of August 15. The median age of MIS-C patients was 9 years, and more than 60% of the cases were in Black or Latinx children, according to the report.

The investigators examined a small group of patients to identify an array of pathogenic pathways culminating in MIS-C, along with proteins in the blood with potential to act as biomarkers to forecast the severity of the syndrome and help drive treatment decisions.

A picture is emerging of MIS-C as an autoimmune disease in which the immune system becomes overactive and mistakenly attacks the body's own organs. This process may be triggered by widespread tissue damage caused by the SARS-CoV-2 infection.

Children with MIS-C often present symptoms similar to those observed in the so-called cytokine storm, an inflammatory response that can be fatal in COVID-19 patients. These symptoms may include persistent fever and gastrointestinal, respiratory, neurological and cardiovascular problems, such as shock and heart muscle inflammation.

The investigators noted that their study was limited by its small size. They examined 69 children, including those with and without MIS-C and seven with another pediatric inflammatory disorder —Kawasaki disease. 

Visit Cedars-Sinai for more news