Researchers identify flu-fighting pathways and genes essential for influenza A immune defense

Oct. 6, 2022
Findings could inform novel treatments for the flu in humans.

Researchers have identified the gene TDRD7 as a key regulator against influenza A virus (IAV), which causes respiratory tract infections in 5 to 20 percent of the human population. These findings could facilitate the development of novel therapeutic interventions against influenza virus infection. The study, led by the Icahn School of Medicine at Mount Sinai in collaboration with other institutions, was published in Science Advances on October 5. 

IAV is responsible for 250,000-500,000 deaths per year worldwide. When IAV infects its host, an immunological response composed of a series of molecular processes begins. IAV can infect several different species, and physiological and genetic differences among these species can contribute to different host responses, although some responses are shared.

The study used RNA sequencing to analyze gene expression over time in cells and tissues collected from IAV-infected humans, ferrets, and mice, identifying multiple key defense processes specific to tissues and species. One gene found to play a key role in immunological defense mechanisms against IAV across all species was TDRD7, which encodes a Tudor domain-containing protein, a type of protein shown to be involved in epigenetic regulation. In light of this discovery, the researchers conducted subsequent experiments inhibiting the function of TDRD7, resulting in an increase of virus replication in IAV-infected models.

Mount Sinai release

ID 345720359 © Prostockstudio | Dreamstime.com
dreamstime_xxl_345720359
ID 42387359 © Gerard Koudenburg | Dreamstime.com
dreamstime_xxl_42387359
ID 335001386 © Serhii Hryshchyshen | Dreamstime.com
dreamstime_xxl_335001386