Prototype taps into the sensing capabilities of any smartphone to screen for prediabetes
Researchers at the University of Washington may have found the sweet spot when it comes to increasing early detection of prediabetes. The team developed GlucoScreen, a new system that leverages the capacitive touch sensing capabilities of any smartphone to measure blood glucose levels without the need for a separate reader.
The researchers describe GlucoScreen in a new paper published March 28 in the Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies.
The researchers' results suggest GlucoScreen's accuracy is comparable to that of standard glucometer testing. The team found the system to be accurate at the crucial threshold between a normal blood glucose level, at or below 99 mg/dL, and prediabetes, defined as a blood glucose level between 100 and 125 mg/dL. This approach could make glucose testing less costly and more accessible — particularly for one-time screening of a large population.
Specifically, the GlucoScreen test strip samples the amplitude of the electrochemical reaction that occurs when a blood sample mixes with enzymes five times each second.
The strip then transmits the amplitude data to the phone through a series of touches at variable speeds using a technique called "pulse-width modulation." The term "pulse width" refers to the distance between peaks in the signal — in this case, the length between taps. Each pulse width represents a value along the curve. The greater the distance between taps for a particular value, the higher the amplitude associated with the electrochemical reaction on the strip.
The advantage of this technique is that it does not require complicated electronic components. This minimizes the cost to manufacture the strip and the power required for it to operate compared to more conventional communication methods, like Bluetooth and WiFi. All data processing and computation occurs on the phone, which simplifies the strip and further reduces the cost.
The test strip also doesn't need batteries. It uses photodiodes instead to draw what little power it needs from the phone's flash.
The flash is automatically engaged by the GlucoScreen app, which walks the user through each step of the testing process. First, a user affixes each end of the test strip to the front and back of the phone as directed. Next, they prick their finger with a lancet, as they would in a conventional test, and apply a drop of blood to the biosensor attached to the test strip. After the data is transmitted from the strip to the phone, the app applies machine learning to analyze the data and calculate a blood glucose reading.
That stage of the process is similar to that performed on a commercial glucometer. What sets GlucoScreen apart, in addition to its novel touch technique, is its universality.